Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Living objects are able to consume chemical energy and process information independently from others. However, living objects can coordinate to form ordered groups such as schools of fish. This work considers these complex groups as living materials and presents imaging-based experiments of laboratory schools of fish to understand how activity, which is a non-equilibrium feature, affects the structure and dynamics of a group. We use spatial confinement to control the motion and structure of fish within quasi-2D shoals of fish and use image analysis techniques to make quantitative observations of the structures, their spatial heterogeneity, and their temporal fluctuations. Furthermore, we utilize Monte Carlo simulations to replicate the experimentally observed data which provides insight into the effective interactions between fish and confirms the presence of a confinement-based behavioral preference transition. In addition, unlike in short-range interacting systems, here structural heterogeneity and dynamic activities are positively correlated as a result of complex interplay between spatial arrangement and behavioral dynamics in fish collectives.more » « lessFree, publicly-accessible full text available December 1, 2025
-
ABSTRACT There are many instances of collective behaviors in the natural world. For example, eukaryotic cells coordinate their motion to heal wounds; bacteria swarm during colony expansion; defects in alignment in growing bacterial populations lead to biofilm growth; and birds move within dynamic flocks. Although the details of how these groups behave vary across animals and species, they share the same qualitative feature: they exhibit collective behaviors that are not simple extensions of details associated with the motion of an individual. To learn more about these biological systems, we propose studying these systems through the lens of the foundational Vicsek model. Here, we present the process of building this computational model from scratch in a tutorial format that focuses on building the appropriate skills of an undergraduate student. In doing so, an undergraduate student should be able to work alongside this article, the corresponding tutorial, and the original manuscript of the Vicsek model to build their own model. We conclude by summarizing some of the current work involving computational modeling of flocking with Vicsek-type models.more » « less
-
Abstract Motivated by the anisotropic interactions between fish, we implement spatially anisotropic and therefore non-reciprocal interactions in the 2D Ising model. First, we show that the model with non-reciprocal interactions alters the system critical temperature away from that of the traditional 2D Ising model. Further, local perturbations to the magnetization in this out-of-equilibrium system manifest themselves as traveling waves of spin states along the lattice, also seen in a mean-field model of our system. The speed and directionality of these traveling waves are controllable by the orientation and magnitude of the non-reciprocal interaction kernel as well as the proximity of the system to the critical temperature.more » « less
An official website of the United States government
